0 0 0 0


I'm currently using matplotlib to plot a measurement against 2 or 3 other measurements (sometimes categorical) on the x-axis. Currently, I am grouping the data on the x-axis into tuples and sorting them before plotting... the result looks something like the left image below. What I would like to do is to plot the data with multiple x-axes as you see in the right image. The grouping of the "treatment" x-axis labels would be icing on the cake.

alt text

Best Answer:

First off, cool question! It's definitely possible with matplotlib >= 1.0.0. (The new spines functionality allows it)

It requires a fair bit of voodoo, though... My example is far from perfect, but hopefully it makes some sense:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
def main():
    #-- Generate some data ----------------------------------------------------
    nx = 10
    x = np.linspace(0, 2*np.pi, 10)
    y = 2 * np.sin(x)
    groups = [('GroupA', (x[0], x[nx//3])),
              ('GroupB', (x[-2*nx//3], x[2*nx//3])),
              ('GroupC', (x[-nx//3], x[-1]))]
    #-- Plot the results ------------------------------------------------------
    fig = plt.figure()
    ax = fig.add_subplot(111)
    # Give ourselves a bit more room at the bottom
    ax.plot(x,y, 'k^')
    # Drop the bottom spine by 40 pts
    ax.spines['bottom'].set_position(('outward', 40))
    # Make a second bottom spine in the position of the original bottom spine
    # Annotate the groups
    for name, xspan in groups:
        annotate_group(name, xspan)
    plt.title('Experimental Data')
def annotate_group(name, xspan, ax=None):
    """Annotates a span of the x-axis"""
    def annotate(ax, name, left, right, y, pad):
        arrow = ax.annotate(name,
                xy=(left, y), xycoords='data',
                xytext=(right, y-pad), textcoords='data',
                annotation_clip=False, verticalalignment='top',
                horizontalalignment='center', linespacing=2.0,
                arrowprops=dict(arrowstyle='-', shrinkA=0, shrinkB=0,
        return arrow
    if ax is None:
        ax = plt.gca()
    ymin = ax.get_ylim()[0]
    ypad = 0.01 * np.ptp(ax.get_ylim())
    xcenter = np.mean(xspan)
    left_arrow = annotate(ax, name, xspan[0], xcenter, ymin, ypad)
    right_arrow = annotate(ax, name, xspan[1], xcenter, ymin, ypad)
    return left_arrow, right_arrow
def make_second_bottom_spine(ax=None, label=None, offset=0, labeloffset=20):
    """Makes a second bottom spine"""
    if ax is None:
        ax = plt.gca()
    second_bottom = mpl.spines.Spine(ax, 'bottom', ax.spines['bottom']._path)
    second_bottom.set_position(('outward', offset))
    ax.spines['second_bottom'] = second_bottom
    if label is not None:
        # Make a new xlabel
                xy=(0.5, 0), xycoords='axes fraction', 
                xytext=(0, -labeloffset), textcoords='offset points', 
                verticalalignment='top', horizontalalignment='center')
if __name__ == '__main__':

Two bottom spines in a matplotlib plot

Copyright © 2011 Dowemo All rights reserved.    Creative Commons   AboutUs